Quasi-socle ideals in local rings with Gorenstein tangent cones

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Good Ideals in Gorenstein Local Rings

Let I be an m-primary ideal in a Gorenstein local ring (A,m) with dimA = d, and assume that I contains a parameter ideal Q in A as a reduction. We say that I is a good ideal in A if G = ∑ n≥0 I n/In+1 is a Gorenstein ring with a(G) = 1−d. The associated graded ring G of I is a Gorenstein ring with a(G) = −d if and only if I = Q. Hence good ideals in our sense are good ones next to the parameter...

متن کامل

Quasi-socle Ideals and Goto Numbers of Parameters

Goto numbers g(Q) = max{q ∈ Z | Q : m is integral overQ} for certain parameter ideals Q in a Noetherian local ring (A,m) with Gorenstein associated graded ring G(m) = ⊕ n≥0 m /m are explored. As an application, the structure of quasisocle ideals I = Q : m (q ≥ 1) in a one-dimensional local complete intersection and the question of when the graded rings G(I) = ⊕ n≥0 I /I are Cohen-Macaulay are s...

متن کامل

Adjoint ideals and Gorenstein blowups in two-dimensional regular local rings

In this article we investigate when a complete ideal in a twodimensional regular local ring is a multiplier ideal of some ideal with an integral multiplying parameter. In particular, we show that this question is closely connected to the Gorenstein property of the blowup along the ideal.

متن کامل

Periodic modules over Gorenstein local rings

It is proved that the minimal free resolution of a module M over a Gorenstein local ring R is eventually periodic if, and only if, the class of M is torsion in a certain Z[t ±1 ]-module associated to R. This module, denoted J(R), is the free Z[t ±1 ]-module on the isomorphism classes of finitely generated R-modules modulo relations reminiscent of those defining the Grothendieck group of R. The ...

متن کامل

Multiplier Ideals in Two-dimensional Local Rings with Rational Singularities

The aim of this paper is to study jumping numbers and multiplier ideals of any ideal in a two-dimensional local ring with a rational singularity. In particular we reveal which information encoded in a multiplier ideal determines the next jumping number. This leads to an algorithm to compute sequentially the jumping numbers and the whole chain of multiplier ideals in any desired range. As a cons...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Commutative Algebra

سال: 2009

ISSN: 1939-2346

DOI: 10.1216/jca-2009-1-4-603